Приложение 1 к РПД
Математический анализ
01.03.02 Прикладная математика и информатика
Направленность (профиль)
Системное программирование
и компьютерные технологии
Форма обучения – очная
Год набора – 2022

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

1.	Кафедра	Математики, физики и информационных технологий		
2.	Направление подготовки	01.03.02 Прикладная математика и информатика		
3.	Направленность (профиль)	Системное программирование и компьютерные технологии		
4.	Дисциплина (модуль)	Б1.О.14.03 Математический анализ		
5.	Форма обучения	очная		
6.	Год набора	2022		

І. Методические рекомендации

1.1 Методические рекомендации по организации работы студентов во время проведения лекционных занятий

- В ходе лекций преподаватель излагает и разъясняет основные, наиболее сложные понятия темы, а также связанные с ней теоретические и практические проблемы, дает рекомендации для практического занятия и указания для выполнения самостоятельной работы.
- В ходе лекционных занятий обучающемуся необходимо вести конспектирование учебного материала. Обращать внимание на категории, формулировки, раскрывающие содержание изучаемой дисциплины, научные выводы и практические рекомендации, положительный опыт в ораторском искусстве.
- Желательно оставить в рабочих конспектах поля, на которых делать пометки, подчеркивающие особую важность тех или иных теоретических положений. Рекомендуется активно задавать преподавателю уточняющие вопросы с целью уяснения теоретических положений, разрешения спорных ситуаций.

1.2 Методические указания к выполнению практических работ

- Практические работы сочетают элементы теоретического исследования и эмпирического познания. Выполняя практические работы, обучающиеся лучше усваивают учебный материал, так как многие определения, казавшиеся отвлеченными, становятся вполне конкретными, происходит соприкосновение теории с практикой, что в целом содействует пониманию сложных вопросов науки и становлению обучающихся как будущих специалистов.
- Выполнение практических работ направлено на:
 - » обобщение, систематизацию, углубление теоретических знаний по конкретным темам учебной дисциплины;
 - > формирование умений применять полученные знания в практической деятельности;
 - > развитие аналитических, проектировочных, конструктивных умений;
 - > выработку самостоятельности, ответственности и творческой инициативы.
- Форма организации обучающихся для проведения практического занятия фронтальная, групповая и индивидуальная — определяется преподавателем, исходя из темы, цели, порядка выполнения работы.
- В ходе практических занятий реализуется интерактивная форма взаимодействия в виде самостоятельных заданий.

– Результаты выполнения практической работы оформляются обучающимися в виде отчета, форма и содержание которого определяются требованиями соответствующей работы.

1.3 Методические рекомендации по организации самостоятельной работы обучающихся

- Самостоятельная работа планируемая учебная, учебно-исследовательская, научноисследовательская работа студентов, выполняемая во внеаудиторное время по заданию и при методическом руководстве преподавателя, но без его непосредственного участия (при частичном непосредственном участии преподавателя, оставляющем ведущую роль за работой студентов).
- Самостоятельная работа студентов (далее СРС) в ВУЗе является важным видом учебной и научной деятельности студента. СРС играет значительную роль в рейтинговой технологии обучения. Обучение в ВУЗе включает в себя две, практически одинаковые по объему и взаимовлиянию части процесса обучения и процесса самообучения. Поэтому СРС должна стать эффективной и целенаправленной работой студента.
- К современному специалисту общество предъявляет достаточно широкий перечень требований, среди которых немаловажное значение имеет наличие у выпускников определенных способностей и умения самостоятельно добывать знания из различных источников, систематизировать полученную информацию, давать оценку конкретной ситуации. Формирование такого умения происходит в течение всего периода обучения через участие студентов в практических занятиях, выполнение контрольных заданий и тестов, написание курсовых и выпускных квалификационных работ. При этом СРС играет решающую роль в ходе всего учебного процесса.
- В процессе самостоятельной работы студент приобретает навыки самоорганизации, самоконтроля, самоуправления, саморефлексии и становится активным самостоятельным субъектом учебной деятельности.
- Формы самостоятельной работы студентов разнообразны. Они включают в себя:
 - изучение учебной, научной и методической литературы, материалов периодических изданий с привлечением электронных средств официальной, статистической, периодической и научной информации;
 - подготовку докладов и рефератов, написание курсовых и выпускных квалификационных работ;
 - участие в работе студенческих конференций, комплексных научных исследованиях.
- Самостоятельная работа приобщает студентов к научному творчеству, поиску и решению актуальных современных проблем.
- Основной формой самостоятельной работы студента является изучение конспекта лекций, их дополнение, рекомендованной литературы, активное участие на практических и лабораторных занятиях.

1.4 Методические рекомендации по выполнению контрольных домашних заданий или индивидуальных заданий

- Домашние задания по курсу выполняются обучающимися самостоятельно в отдельной тетради или в тетради для практических занятий.
- Домашние задания ориентированы на закрепление теоретического материала, изученного в ходе лекционного занятия и отработанного на практических занятиях по каждой теме курса.
- При выполнении домашнего задания обучающийся должен повторить теоретический материал лекции по данной теме; разобрать задания, выполненные на практическом занятии; записать условие задания в тетрадь; полно и с обоснованием действий выполнить решение заданий; при необходимости привести необходимые уточнения (формулы, теоремы, утверждения), на основе которых проводилось решение; записать ответ или вывод.
- Все индивидуальные задания необходимо защитить в устной форме, ответив на вопросы преподавателя по выполнению заданий и обоснованию приведенного решения.

1.5 Методические рекомендации по выполнению контрольных работ

– Контрольные работы по данной дисциплине выполняются в отдельных тетрадях для контрольных работ или на отдельных листах, которых хранятся у преподавателя; в них же

обучающийся выполняет работу над допущенными ошибками в случае неудовлетворительного выполнения контрольной работы или дополнительное задание для допуска к пересдаче контрольной работы.

- Контрольная работа считается зачтенной, если правильно выполнено не менее 60% заданий.
- Задания контрольной работы выполняются аккуратно, последовательно, обоснование решения и ответ обязательны в каждом задании.
- При написании работы можно использовать черновик.
- При выполнении контрольных работ не допускается использование мобильных устройств, гаджетов, калькуляторов, учебной литературы.

1.6 Методические рекомендации по решению задач (самостоятельная работа по вариантам)

- Важным критерием усвоения теории является умение решать задачи на пройденный материал.
- При решении задач нужно обосновать каждый этап решения исходя из теоретических положений курса. Если студент видит несколько путей решения, то он должен сравнить их и выбрать из них самый лучший. Полезно до начала вычислений составить краткий план решения.
- Решения задач и примеров следует излагать подробно, вычисления располагать в строгом порядке, отделяя вспомогательные вычисления от основных. Чертежи можно выполнять от руки, но аккуратно и в соответствии с данными условиями. Если чертеж требует особо тщательного выполнения (например, при графической проверке решения, полученного путем вычислений), то следует пользоваться линейкой, транспортиром, лекалом и указывать масштаб.
- Решение каждой задачи должно доводиться до ответа, требуемого условием, и по возможности в общем виде с выводом формулы. Затем в полученную формулу подставляют числовые значения (если они даны). В промежуточных вычислениях не следует вводить приближенные значения корней, числа π и т. п.
- Полученный ответ следует проверять способами, вытекающими из существа данной задачи.
 Если, например, решалась задача с конкретным физическим или геометрическим содержанием, то полезно, прежде всего, проверить размерность полученного ответа. Полезно также, если возможно, решить задачу несколькими способами и сравнить полученные результаты.
- Решение задач определенного типа нужно продолжать до приобретения твердых навыков в их решении.

1.7 Методические рекомендации по проведению коллоквиума

- Коллоквиум осуществляется в рамках завершения дидактической единицы дисциплины (модуля) и позволяет определить качество усвоения изученного материала, а также степень сформированности компетенций.
- Коллоквиум позволяет студентам заранее и более эффективно подготовиться к экзамену или зачёту в формате собеседования по вопросам.
- Коллоквиум предполагает ответы на вопрос или вопросы билета, который составляется преподавателем и не утверждается на кафедре, однако вопросы выбираются из списка вопросок к зачёту или экзамену, а их количество существенно меньше, чем то, что используется для итоговой формы контроля по дисциплине
- Преподавателю предоставляется право задавать студентам вопросы в рамках билета, а также, помимо теоретических вопросов, предлагать задачи практико-ориентированной направленности по программе данного курса.
- Рекомендуется при подготовке к экзамену опираться на следующий план:
 - 1. Просмотреть программу курса, с целью выявления наиболее проблемных тем, вопросов, которые могут вызвать трудности при подготовке.
 - 2. Темы необходимо изучать последовательно, внимательно обращая внимание на описание вопросов, которые раскрывают ее содержание. Начинать необходимо с первой темы.
 - 3. После работы над первой темой необходимо ответить на вопросы для самоконтроля и решить тестовые задания к ней. При этом для эффективного закрепления информации

прорешать тест первый раз лучше без использования учебных материалов, второй раз с их использованием.

4. И так далее по остальным темам.

1.8 Методические рекомендации по подготовке к сдаче зачета

- Зачет осуществляется в рамках завершения изучения дисциплины и позволяет определить качество усвоения изученного материала, а также степень сформированности компетенций.
- Студенты обязаны сдавать зачет в строгом соответствии с утвержденными учебными планами, разработанными согласно образовательным стандартам высшего образования.
- По данной дисциплине зачет принимается по практической части курса. Задания, предлагаемые на зачете, соответствуют оценочным средствам для промежуточной аттестации обучающихся по предмету.
- Студент обязан не только представить правильно выполненные задания, но и защитить свое решение.
- Преподавателю предоставляется право задавать студентам вопросы по решению заданий практической части с целью выявления глубины понимания изученного материала и степени самостоятельности выполнения заданий.
- При явке на зачет студенты обязаны иметь при себе зачетную книжку, которую они предъявляют преподавателю в начале зачета.
- Рекомендуется при подготовке к зачету опираться на следующий план:
 - 1. Повторить теоретическую часть курса.
 - 2. После работы над теорией необходимо ответить на вопросы для самоконтроля.
 - 3. Повторить методы, способы и приемы решения задач по всем темам курса, опираясь на задания, которые решались на практических занятиях и предлагались для самостоятельной работы.
 - 4. Решить типовые задания по данной теме.

1.9 Методические рекомендации по подготовке к сдаче экзамена

- Экзамен осуществляется в рамках завершения изучения дисциплины (модуля) и позволяет определить качество усвоения изученного материала, а также степень сформированности компетенций.
- Студенты обязаны сдавать экзамен в строгом соответствии с утвержденными учебными планами, разработанными согласно образовательным стандартам высшего образования.
- По дисциплине экзамен принимается по билетам, содержащим два вопроса. Экзаменационные билеты утверждаются на заседании кафедры.
- Экзаменатору предоставляется право задавать студентам вопросы в рамках билета, а также, помимо теоретических вопросов, предлагать задачи практико-ориентированной направленности по программе данного курса.
- При явке на экзамен студенты обязаны иметь при себе зачетную книжку, которую они предъявляют экзаменатору в начале экзамена.
- Рекомендуется при подготовке к экзамену опираться на следующий план:
 - 1. Просмотреть программу курса, с целью выявления наиболее проблемных тем, вопросов, которые могут вызвать трудности при подготовке к экзамену.
 - 2. Темы необходимо изучать последовательно, внимательно обращая внимание на описание вопросов, которые раскрывают ее содержание. Начинать необходимо с первой темы.
 - 3. После работы над первой темой необходимо ответить на вопросы для самоконтроля и решить тестовые задания к ней. При этом для эффективного закрепления информации прорешать тест первый раз лучше без использования учебных материалов, второй раз с их использованием.
 - 4. И так далее по остальным темам.

II. Планы практических занятий

Практикум по теме «Алгебраические выражения, уравнения, неравенства» (раздел 1.1)

Литература: [1, стр. 32-39].

Вопросы для самоконтроля:

- 1. Что называется алгебраическим выражением?
- 2. Какие преобразования называются равносильными на некотором множестве?
- 3. Приведите примеры равносильных и неравносильных преобразований.
- 4. Перечислите этапы решения квадратного уравнения.
- 5. Сформулируйте этапы метода интервалов для решения дробно-рациональных неравенств.
- 6. Перечислите основные методы решения нелинейных уравнений.

Задания для самостоятельного выполнения

Самостоятельная работа №1

Вариант 0

Задание 1. Выделите полные квадраты в выражениях:

1)
$$2x^2 + 10x + 11$$

2)
$$3 + 4x - 2x^2$$

1)
$$2x^2 + 10x + 11$$
; 2) $3 + 4x - 2x^2$; 3) $x^2 - 3x + y^2 + 6y - 1$.

Задание 2. Выделите целую часть в каждой из данных алгебраических дробей:____

1)
$$\frac{x^3 - 4x^2 + 2x - 1}{x - 2}$$
; 2) $\frac{x^4 + 1}{x^2 - 3x - 4}$.

2)
$$\frac{x^4+1}{x^2-3x-4}$$

Задание 3. Проведите уничтожение иррациональности в знаменателе каждой дроби:

1)
$$\frac{1}{\sqrt{x+3}-2}$$

2)
$$\frac{2}{\sqrt[3]{x}+3}$$

1)
$$\frac{1}{\sqrt{x+3}-2}$$
; 2) $\frac{2}{\sqrt[3]{x+3}}$; 3) $\frac{8}{\sqrt{x-5}+\sqrt{x+3}}$.

Задание 4. Решите уравнения относительно x:

1)
$$|x-2| + |x-3| = |x|$$

2)
$$x^2 + 8|x| - 9 = 0$$

1)
$$|x-2| + |x-3| = |x|$$
; 2) $|x^2| + 8|x| - 9 = 0$; 3) $\frac{21}{x^2 - 4x + 10} - x^2 + 4x = 6$.

Задание 5. Решите неравенства относительно x:

1)
$$\frac{(x-3)(x^2-1)}{|x|(x+5)} \ge 0$$
; 2) $|2x-7| < 5$; 3) $\sqrt{x^2-2x} < 3$.

2)
$$|2x-7| < 5$$

3)
$$\sqrt{x^2 - 2x} < 3$$

Задание 6. Найдите четыре числа, образующих геометрическую прогрессию, у которой третий член больше первого на 9, а второй больше четвёртого на 18.

Ответы к заданиям варианта 0 самостоятельной работы №1

Задание 1. 1)
$$2(x+2.5)^2 - 1.5$$
; 2) $5-2(x-1)^2$; 3) $(x-1.5)^2 + (y+3)^2 - 12.25$

2)
$$5-2(x-1)^2$$

3)
$$(x-1,5)^2 + (y+3)^2 - 12,25$$

Задание 2. 1)
$$x^2 - 2x - 2 - \frac{5}{x-2}$$
; 2) $x^2 + 3x + 13 + \frac{51x + 53}{x^2 - 3x - 4}$.

2)
$$x^2 + 3x + 13 + \frac{51x + 53}{x^2 - 3x - 4}$$

Задание 3. 1)
$$\frac{\sqrt{x+3}+2}{x-1}$$
; 2) $\frac{2\cdot(\sqrt[3]{x^2}-3\sqrt[3]{x}+9)}{x+27}$; 3) $\sqrt{x+3}-\sqrt{x-5}$.

2)
$$\frac{2 \cdot (\sqrt[3]{x^2} - 3\sqrt[3]{x} + 9)}{x + 27}$$

$$3) \sqrt{x+3} - \sqrt{x-5}$$

Задание 5. 1)
$$x \in (-\infty; -5) \cup [-1; 0) \cup (0; 1] \cup [3; +\infty);$$
 2) $x \in (1; 6);$

2)
$$x \in (1; 6)$$

3)
$$x \in (1 - \sqrt{10}; 0] \cup [2; 1 + \sqrt{10})$$
.

Задание 6. 3; -6; 12; -24.

Практикум по теме «Трансцендентные выражения, уравнения, неравенства» (раздел 1.2)

Содержание: решение уравнений и неравенств, содержащих логарифмические, показательные, тригонометрические и обратные тригонометрические выражения и функции.

Литература: [1, с. 1-60], [3, стр. 2-56].

Вопросы для самоконтроля:

- 1. Перечислите свойства логарифмической (показательной) функции.
- 2. Перечислите тождества, справедливые для логарифмических (показательных) выражений.
- 3. Сформулируйте основные методы решения логарифмических (показательных) уравнений и неравенств.
- 4. Перечислите свойства тригонометрических и обратных тригонометрических функций.
- 5. Перечислите тождества, справедливые для тригонометрических выражений.
- 6. Сформулируйте основные методы решения тригонометрических уравнений и неравенств.

Задания для самостоятельного выполнения

Самостоятельная работа №2 Вариант 0

1. Вычислите значение выражения:

1)
$$-100\cos 4x$$
, если $ctgx = 0.5$; 2) $\frac{4}{3}tg\left(\pi - \arcsin\left(-\frac{3}{5}\right)\right)$;

3)
$$49^{0.5\log_7 10} : 49^{(\log_8 49)^{-1}};$$
 4) $-\log_2 \log_2 \sqrt[8]{2}$.

2. Решите следующие уравнения относительно х:

1)
$$\cos^2 x - 2\cos x = 3, x \in (-\pi; 3\pi);$$

2)
$$\frac{1+\cos 2x}{2\cos x} = \frac{\sin 2x}{1-\cos 2x}$$
;

3)
$$4^{4x-2} - 4^{2x-1} = 12$$
;

4)
$$\log_9 x^2 + \log_3(x-1) = \log_3 \log_{\sqrt{5}} 5$$
;

5)
$$\lg(0.5+x) = \lg 0.5 - \lg x$$
;

6)
$$2 \lg \lg x = \lg(7 - 2 \lg x) - \lg 5$$
.

3. Решите неравенства относительно $^{\chi}$:

1)
$$\log_2(x+14) \ge \log_2(x^2+2)$$
;

2)
$$4^{-x+0.5} - 7 \cdot 2^{-x} - 4 < 0$$
;

3)
$$\log_{0.5}^2 x + \log_{0.5} (0.5x) - 3 \le 0$$
;

4)
$$\cos^2 2x > \frac{1}{4}$$
;

5)
$$\left| \operatorname{ctg} x \right| \le 1$$
.

Ответы к заданиям 0 варианта самостоятельной работы №2

2. 1)
$$\pi$$
; 2) \varnothing ; 3) 1; 4) 2; 5) 0,5; 6) 10.

3. 1)
$$x \in [-3, 4]$$
 2) $x \in (-2, +\infty)$ 3) $x \in [0, 5, 4]$;

4)
$$x \in \bigcup_{k \in \mathbb{Z}} \left(-\frac{\pi}{6} + \frac{\pi k}{2}; \frac{\pi}{6} + \frac{\pi k}{2} \right);$$

5)
$$x \in \bigcup_{k \in \mathbb{D}} \left[\frac{\pi}{4} + \pi k; \frac{3\pi}{4} + \pi k \right].$$

Обобщающий практикум по разделу 1

Содержание: решение задач с использованием прогрессий, решение систем уравнений и/или неравенств, решение задач с параметрами.

Литература: [1, стр. 9-12, стр. 32-39, стр. 66-72], [2, стр. 2-23].

Вопросы для самоконтроля:

- 1. Что такое числовая последовательность?
- 2. Какие последовательности называются арифметической и геометрической прогрессиями?
- 3. Запишите формулы для суммы первых n членов арифметической/геометрической прогрессии.
- 4. Перечислите основные методы решения систем уравнений и неравенств.
- 5. Сформулируйте, какова на ваш взгляд специфика решения систем логарифмических (показательных, тригонометрических) уравнений и неравенств.
- 6. Перечислите преобразования, не нарушающие равносильности систем уравнений и/или неравенств.
- 7. Как вы понимаете термин «параметр»?
- 8. Сформулируйте задачу с параметром в стандартной постановке.
- 9. С какой целью и в каких случаях используется ось параметра и плоскость параметров?
- 10. Сформулируйте основные подходы к решению уравнений, неравенств и их систем, содержащих параметры.

Задания для самостоятельного выполнения

КДЗ №1 по разделу «Основные структуры элементарной математики» (раздел 1)

Часть 1.Алгебраические выражения, уравнения, неравенства, системы

- Задание 1.1. Определите координаты точки M_0 пересечения прямых y=a+2x и y=2-3x и найдите все значения a, при которых точка пересечения прямых находится во второй координатной четверти.
- Задание 1.2. Определите координаты вершины параболы $y = x^2 + 2px 2p + 3$ и найдите значения p, при которых вершина параболы расположена в IV четверти.
- Задание 1.3. Определите количество решений системы $\begin{cases} x^2 + y^2 = a^2 \\ 2x + y = 1 \end{cases}$ в зависимости от параметра a.
- Задание 1.4. Найдите значения a, при которых неравенство $x^2 + (2a+4)x + 8a + 1 \ge 0$ справедливо для всех $x \in \mathbb{R}$.
- Задание 1.5. Найдите четыре числа, первые три из которых составляют геометрическую прогрессию, а последние три арифметическую прогрессию. Сумма крайних чисел равна 21, а сумма средних чисел равна 18.

Задание 1.6. Найдите сумму
$$S_n = (2 + \frac{1}{2})^2 + (4 + \frac{1}{4})^2 + (8 + \frac{1}{8})^2 + \dots + (2^n + \frac{1}{2^n})^2$$
.

Задание 1.7. Сократите дробь
$$\frac{6x^4 - 5x^3 - 38x^2 - 5x + 6}{(x^2 - 4) \cdot (8x^3 + 1) \cdot (3x^2 - 4x + 1)}.$$

Задание 1.8.

Предприятие производит три вида бумажной продукции: почтовые конверты, бумага для принтера, картон. В производстве используется три вида сырья: целлюлоза, канифольный клей, анилиновые красители. Нормы расхода сырья на производство одной упаковки бумажной продукции указаны в таблице:

продукция сырье	целлюлоза	клей	красители
1 упаковка конвертов	2 кг	0,4 кг	0,2 кг
1 упаковка бумаги для принтера	3 кг	0,5 кг	0,4 кг
1 упаковка картона	5 кг	1 кг	0,1 кг

- 1) Известно, что за один рабочий день предприятие расходует 1150кг целлюлозы, 210кг канифольного клея и 115кг анилиновых красителей. Сколько упаковок каждого вида продукции при этом производится?
- 2) Прибыль от реализации одной упаковки конвертов составляет 10 рублей, бумаги для принтера— 40 рублей, картона— 25 рублей. Найти суммарную прибыль предприятия за 5 рабочих дней.

Задание 1.9.

Вкладчик распределяет свой капитал в три банка. При этом количество денег, которые он вкладывает в третий банк, должно быть равно количеству денег, вкладываемых в первый и второй банк вместе. Первый банк выплачивает 10% годовых, второй 20%, а третий 40%. Какой наибольший и какой наименьший процент дохода может получить вкладчик от своего капитала и при каком распределении вкладов эти доходы будут реализовываться?

Часть 2. Трансцендентные, уравнения, неравенства, системы

Задание 2.1. Упростите следующие выражения:

1)
$$2(\sin^6 \alpha + \cos^6 \alpha) - 3(\sin^4 \alpha + \cos^4 \alpha) + 1$$
;

3)
$$\frac{\sin 6\alpha}{\sin 2\alpha} + \frac{\cos(6\alpha - \pi)}{\cos 2\alpha}.$$

$$2) \frac{\log_3 135}{\log_{15} 3} - \frac{\log_3 5}{\log_{405} 3};$$

Задание 2.2. Решите уравнения относительно x:

1)
$$\log_4(2\log_3(1+\log_2(1+\log_2(1+\log_2 x)))) = 0.5$$
; 2) $4^{\sqrt{x-2}} + 16 = 10 \cdot 2^{\sqrt{x-2}}$;

2)
$$4^{\sqrt{x-2}} + 16 = 10 \cdot 2^{\sqrt{x-2}}$$
;

3)
$$\sin^2 \frac{\pi x}{2} = 0.5$$
, $|x| \le 1$;

$$4) \sin 3x + \sin 5x = \sin 4x.$$

Задание 2.3. Решите неравенства относительно X:

1)
$$\log_3 |3 - 4x| > 2$$
;

2)
$$\log_{0.5}^2 x + \log_{0.5} x - 2 \le 0$$
; 3) $x^2 \cdot 5^x - 5^{2+x} < 0$;

3)
$$x^2 \cdot 5^x - 5^{2+x} < 0$$

4)
$$|\sin 2x| < 0.5$$
:

5)
$$\cos^2 x - 0.5 \ge 0$$
.

Задание 2.4. Решите следующие системы уравнений:

1) 3)
$$\begin{cases} 9^{x} \cdot 3^{y} = 81 \\ \log_{2} x + \log_{2} y = 1 \end{cases}$$
;
$$\begin{cases} 7^{2x} - 7^{x} \cdot y = 28 \\ y^{2} - y \cdot 7^{x} = -12 \end{cases}$$

Задание 2.5. При каких значениях *а* уравнения имеют корни?

1)
$$\sin x = \frac{a-1}{a-5}$$
;

2)
$$|tg3x| = \frac{\sqrt{a}-1}{a-5}$$
;

3)
$$2 \cdot \lg(x+3) = \lg(a \cdot x)$$
.

Задание 2.6. Все решения неравенства $2^{|x-3|+a} < \frac{1}{2}$ заполняют промежуток длины 6. Найдите значение a.

 $(0,5)^{\frac{1}{2(x-1)^2}} \le (0,25)^{\frac{1}{(3-x)^2}}$ входит неравенства Задание 2.7. Всякое ООФ $f(x) = \lg(9 - 16a^4x^2)$. Найдите значения a.

Защита КДЗ №1 по модулю «Основные структуры элементарной математики»

Вариант 0

Задание 1. Найдите все значения параметра a, при которых неравенство $x^2 + ax + 4 \ge 0$ справедливо при всех $x \in \square$.

Задание 2. Упростите следующие выражения:

1)
$$\frac{2x^3 + x^2 - 13x + 6}{2x^2 - 5x + 2}$$
;

2)
$$\log_2 \log_3 \log_{0.5} (0.125)^3$$
;

3)
$$2\sin^2(\pi - 4\alpha) + \cos\left(\frac{\pi}{2} - \alpha\right) + 2\sin^2\left(\frac{\pi}{2} + 4\alpha\right)$$
, $\alpha = \frac{\pi}{6}$.

Задание 3. Решите уравнения относительно x:

1)
$$(\cos^2 x - \sin^2 x) \cdot \sqrt{1 - x^2} = 0$$
;

2)
$$\log_2^2 x + \log_2 x - 2 = 0$$
;

3)
$$|x+1| = 2|x-2|$$
;

4)
$$\sqrt{2x^2 - 9x - 20} = x - 2$$

Задание 4. Решите неравенства относительно x:

1)
$$\frac{14x}{x+1} \le \frac{9x-30}{x-4}$$
;

2)
$$|\log_3 x| < |\log_3 x - 2|$$
;

3)
$$(0.25)^x - 5 \cdot (0.5)^x + 4 \ge 0$$
;

4)
$$\cos^2 x - 0.5 < 0.$$

Задание 5. Решите системы относительно x, y:

1)
$$\begin{cases} \sqrt{x-3} = y \\ 2|x-3| - y = 1 \end{cases}$$
;

$$\begin{cases}
\sin x - 2\sin y = 1,5 \\
2\sin x + \sin y = 0,5 \\
x \in (0;\pi), \quad y \in \left(-\frac{\pi}{2};0\right).
\end{cases}$$

Задание 6. Одиннадцатый член арифметической прогрессии равен -89, сумма первых двадцати членов равна -1810. Найдите: 1) эту прогрессию; 2) число n членов этой прогрессии в интервале (0;16), перечислите эти члены прогрессии.

Ответы к заданиям защиты КДЗ №1

Задание 1. $a \in [-4; 4]$.

Задание 2. 1)
$$x+3$$
, $x \neq 2$, $x \neq 0,5$;

Задание 3. 1)
$$x \in \left\{\pm \frac{\pi}{4}; \pm 1\right\};$$
 2) $x \in \left\{\frac{1}{4}; 2\right\};$ 3) $x \in \{1; 5\};$ 4) $x = 8$.

2)
$$x \in \left\{ \frac{1}{4}; 2 \right\};$$

3)
$$x \in \{1; 5\}$$

4)
$$x = 8$$

Задание 4. 1)
$$x \in (-1; 1] \cup (4; 6];$$
 2) $x \in (0;3);$ 3) $x \in (-\infty; -2] \cup [0; +\infty);$ 4) $x \in \left(\frac{\pi}{4} + \pi n; \frac{3\pi}{4} + \pi n\right), n \in \mathbf{Z}.$

Задание 5. 1)
$$(4;1)$$
; 2) $\left(\frac{\pi}{6}; -\frac{\pi}{6}\right), \left(\frac{5\pi}{6}; -\frac{\pi}{6}\right)$.

Задание 6. 1)
$$a_1 = -119$$
, $d = 3$; 2) $n = 5$, $\{a_{41} = 1, 4, 7, 10, a_{45} = 13\}$.

Практикум по теме «Элементы теории множеств» (раздел 2.1)

Содержание: способы задания множеств, основные операции над множествами; множество действительных чисел (аксиоматическое определение) и его стандартные подмножества; расширенная числовая прямая, окрестности её точек; ограниченность множеств, точные верхние и нижние грани; множества точек на координатной прямой и на координатной плоскости. Понятие мощности множества. Счетные множества.

Литература [1, стр. 4-49], [3, стр. 3-9], [5, стр. 6-14]

Вопросы для самоконтроля:

- 1. Перечислите свойства множеств и подмножеств.
- 2. Перечислите основные операции над множествами.
- 3. Сформулируйте свойства операций над множествами.
- 4. Назовите стандартные числовые множества.
- 5. Перечислите свойства множества действительных чисел.
- 6. Дайте определения терминов «точная верхняя (нижняя) грань множества», «расширенная числовая прямая», «окрестность точки».
- 7. Как вы понимаете ограниченность числового множества?

Задания для самостоятельного выполнения

Самостоятельная работа № 3 «Элементы теории множеств»

Вариант 0

Задание 1. Найдите множество X значений x, для которых определена функция y = f(x), если

1)
$$f(x) = \sqrt{5-x} + \frac{1}{\sqrt{x+1}} + \log_2(x+2)$$
; 2) $f(x) = \sqrt{\cos 3x}$.

Задание 2. Запишите элементы каждого из данных множеств A, B, C, D, F и укажите среди них множества, которые являются:

- 1) дискретными, 2) непрерывными, 3) равными, 4) ограниченными,
- 5) неограниченными, 6) конечными, 7) бесконечными.

$$A = \{a \mid a = 5 - n, n \in \square, n \le 9\}, \quad B = \{b \in \square \mid |b| < 5\}, \quad C = \{x \in \square \mid |x| < 5\},$$

$$D = \{x \in \Box / x^2 - 25 < 0\}, \qquad F = \{x_n / x_n = 5 - n, n \in \Box \}.$$

Задание 3. Даны множества: $A = \{x \in \Box \mid |x| \le 5\}, B = \{0; -1; 6; 3\};$

- 1) перечислите множество А списком его элементов, изобразите множества А и В диаграммой Эйлера-Венна и точками на координатной прямой;
- 2) запишите для данных множеств их объединение, пересечение, разности и симметричную разность.

Задание 4. Постройте множества А и В на одной координатной прямой, если

$$A = \{x \in \Box / | x \ge 1\}, B = \{x \in \Box / | x > 5\}$$
:

запишите промежутками, изобразите диаграммой Эйлера-Венна и на координатной прямой множество B'_A .

Задание 5. Перечислите или запишите промежутками элементы следующих множеств:

1)
$$A = \{ x \in \Box / |x+4| < 7 \}$$
;

2)
$$B = \{ x \in \Box /1 < |x| \le 4 \}$$
;

3)
$$C = \{x \in \Box / \cos 4x = 1, x \in (0; \pi]\}$$
; 4) $X = \{x \in \Box / 4^x + 3 \cdot 2^x - 4 \le 0\}$;

4)
$$X = \{ x \in \Box / 4^x + 3 \cdot 2^x - 4 \le 0 \}$$

5)
$$Y = \{x \in \Box / |x-1| - |x-4| < 2\}$$

5)
$$Y = \{x \in \Box / |x-1| - |x-4| < 2\};$$
 6) $L = \{x \in \Box / x^2 + 7x + 10 \ge 0 \text{ if } \frac{x-8}{x-3} \le 2\}.$

Задание 6. Даны два бесконечных множества $A = \{x \in \Box \ / \ | \ x-1 | \le 3\}$ и $B = \{x \in \Box \ / \ | \ x+1 | < 3\}$;

- 1) запишите эти множества промежутками и постройте их точками на одной координатной прямой;
- 2) запишите промежутками множества $A \cup B$, $A \cap B$, $A \setminus B$, $B \setminus A$, $A \square B$;
- 3) запишите по определению и изобразите геометрически множества $A \times B$, $B \times A$.

Задание 7. Постройте множества точек на координатной плоскости хОу:

1)
$$A = \{(x; y)/(x-2)\cdot(y+3) > 0\}$$
;

2)
$$B = \{(x; y) / y = ||x-1|-2|\}$$
;

3)
$$C = \{(x; y) / y = \sin|x|\}$$
;

4)
$$D = \{(x, y) / y > x^2 - 2x \text{ if } y < 0.5x + 2\}$$
;

5)
$$M_1 = \{(x; y) / x^2 - 4 \le y < x + 2\}$$

5)
$$M_1 = \{(x; y) / x^2 - 4 \le y < x + 2\};$$
 6) $M_2 = \{(x; y) / x^2 + y^2 > 4 \text{ if } |x| \ge 1\}.$

Задание 8. Дано множество $A = \{x \in \Box / x^2 + 3x - 10 \le 0\}$ и два условия:

- (1) число х является неположительным,
- (2) число х удовлетворяет неравенству |x+1| < 2.

Запишите разбиение множества A на подмножества по признаку удовлетворения его элементов

условиям (1) и (2).

Задание 9. Запишите промежутками и опишите неравенствами следующие окрестности точек множества $\overline{\square}$, если $x_0 = 3$, $\varepsilon = 0.1$:

1)
$$U_{\varepsilon}(x_0)$$
; 2) $U_{\varepsilon}(x_0)$; 3) $U_{\varepsilon}(+\infty)$; 4) $U_{\varepsilon}(-\infty)$; 5) $U_{\varepsilon}(\infty)$.

Задание 10. Запишите элементы множеств A, B, C и охарактеризуйте их ограниченность; укажите точные грани и экстремумы каждого множества:

1)
$$A = \{x \in \Box / x < 1\}, \quad 2) B = \{x \in \Box / |x - 3| < 3\}, \quad 3) C = \{x / x = \frac{1}{n^2}, n \in \Box \}.$$

Ответы к заданиям варианта 0 самостоятельной работы № 3

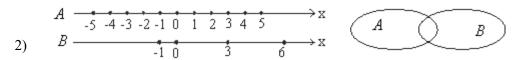
Задание 1. 1)
$$X = (-1;5]$$
; 2) $X = \bigcup_k [-\frac{\pi}{6} + \frac{2\pi k}{3}; \frac{\pi}{6} + \frac{2\pi k}{3}], k \in \square$.

Задание 2.
$$A = \{4,3,2,1,0,-1,-2,-3,-4\}$$
; $B = (-5;5)$; $C = \{-4,-3,-2,-1,0,1,2,3,4\}$; $D = (-5;5)$; $F = \{4,3,2,1,0,-1,-2,...\}$;

- 1) дискретные множества: A, C, F;
- 2) непрерывные множества: B, D;
- 3) равные множества: A=C, B=D;
- 4) ограниченные множества: A, B, C, D;
- 5) неограниченные множества: F;
- 6) конечные множества: A, C;
- 7) бесконечные множества: F, B, D.

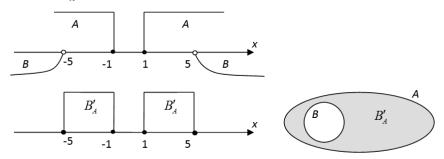
Задание 3.

1)
$$A = \{0; \pm 1; \pm 2; \pm 3; \pm 4; \pm 5\};$$



$$A \cup B = \{0; \pm 1; \pm 2; \pm 3; \pm 4; \pm 5; 6\}, A \cap B = \{0; -1; 3\}, A \setminus B = \{1; \pm 2; -3; \pm 4; \pm 5\}, B \setminus A = \{6\}, A \square B = \{1; \pm 2; -3; \pm 4; \pm 5; 6\}.$$

Задание 4. $B'_A = [-5; -1] \cup [1; 5]$



Задание 5. 1)
$$A = \{1, 2\}$$
;

Задание 5. 1)
$$A = \{1; 2\}$$
; 2) $B = \{-4; -3; -2; 2; 3; 4\}$; 3) $C = \{\frac{\pi}{2}; \pi\}$;

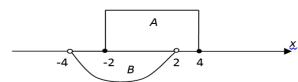
4)
$$X = (-\infty; 0]$$
;

5)
$$Y = (-\infty; 3.5)$$
:

4)
$$X = (-\infty; 0];$$
 5) $Y = (-\infty; 3.5);$ 6) $L = (-\infty; -5] \cup \{-2\} \cup (3; +\infty)$.

Задание 6.

1)
$$A = [-2; 4], B = (-4; 2).$$

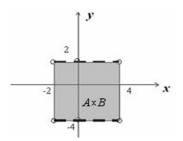


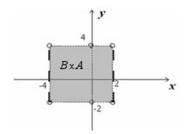
2)
$$A \cup B = (-4, 4], \quad A \cap B = [-2, 2), \quad A \setminus B = [2, 4],$$

$$A \setminus B = [2;4],$$

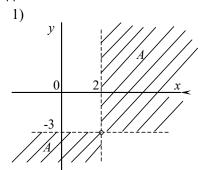
$$B \setminus A = (-4; -2), \quad A \square B = (-4; -2) \cup [2; 4];$$

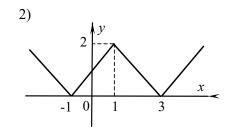
3)
$$A \times B = \{(x, y) \mid x \in [-2, 4], y \in (-4, 2)\}, \quad B \times A = \{(x, y) \mid x \in (-4, 2), y \in [-2, 4]\};$$

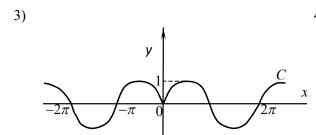


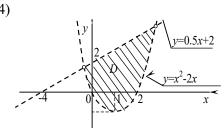


Задание 7.

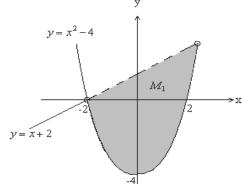




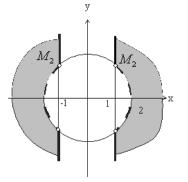




5)
$$M_1: x^2 - 4 \le y < x + 2$$



6)
$$M_2: \begin{cases} x^2 + y^2 > 4 \\ |x| \ge 1 \end{cases}$$



Задание 8.
$$A_1 = [-5; -3], \quad A_2 = (0;1), \quad A_3 = (-3;0], \quad A_4 = [1;2]$$

$$\Rightarrow \begin{cases} A_1 \cup A_2 \cup A_3 \cup A_4 = A = [-5;2] \\ A_i \cap A_j = 0 & \text{при } \forall \, i \neq j. \end{cases}$$

Задание 9. 1)
$$U_{0,1}(3) = (2,9; 3,1) = \{x \in \Box / |x-3| < 0,1\};$$

2)
$$\overset{\circ}{U}_{0,1}(3) = (2,9;3) \cup (3;3,1) = \{ x \in \Box / 0 < |x-3| < 0,1 \} ;$$

3)
$$U_{0,1}(+\infty) = (10; +\infty) = \{x \in \Box /x > 10\}$$
;

4)
$$\overset{\circ}{U}_{0,1}(-\infty) = (-\infty; -10) = \{ x \in \Box / x < -10 \} ;$$

5)
$$\overset{\circ}{U}_{0,1}(\infty) = (-\infty; -10) \cup (10; +\infty) = \{x \in \Box / |x| > 10\}$$
.

Задание 10.

- 1) $A = \{0, -1, -2, -3, ...\}$ неограниченное множество, т.к. не является ограниченным снизу; $\sup A = 0$, $\inf A = -\infty$; $\max A = 0$, $\min A$ не сущ. :
- 2) B = (0; 6) ограниченное множество, т.к. является ограниченным сверху и снизу; $\sup B = 6$, $\inf B = 0$; $\max B \text{не сущ.}$;
- 3) $C = \left\{1, \frac{1}{4}, \frac{1}{9}, \frac{1}{16}, ..., \frac{1}{n^2}, ...\right\}$ ограниченное множество, т.к. является ограниченным сверху и снизу; $\sup C = 1$, $\inf C = 0$; $\max C = 1$, $\min C$ не сущ.

Практикум по теме «Отображения множеств и числовые функции» (раздел 2.4)

Содержание: виды отображений множеств, суперпозиция отображений, Основные способы задания функции и основные характеристики функции, преобразование графиков элементарных функций. Построение графиков кусочно-заданных функций.

Литература: [1, стр. 49-145], [3, стр. 13-16].

Вопросы для самоконтроля:

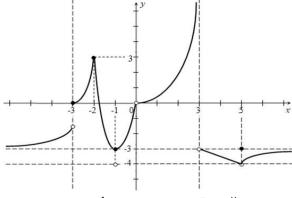
- 1. Что означает понятие «отображение множеств»?
- 2. Дайте определение понятия «сюръекция» как отображения.
- 3. Дайте определение понятия «инъекция» как отображения.
- 4. Дайте определение понятия «биекция» как отображения.
- 5. Поясните содержание терминов «образ» и «прообраз» при отображении.
- 6. Какие отображения называются многозначными?
- 7. Что называется суперпозицией отображений?
- 8. Что такое функция?
- 9. Что называется множеством задания функции?
- 10. Какой синоним употребляется для предыдущего понятия?
- 11. Назовите способы задания функций и приведите примеры.
- 12. Что называется обратной функцией?
- 13. Назовите условие существования функции, обратной данной.
- 14. Перечислите свойства (характеристики) функции действительного аргумента.
- 15. Перечислите основные элементарные числовые функции?
- 16. Какие числовые функции называются элементарными?
- 17. Сформулируйте правила преобразования графиков элементарных функций.

Задания для самостоятельного выполнения

Самостоятельная работа №4 «Функции, отображения множеств»

Вариант 0

Задание 1. Укажите все глобальные характеристики функции по её графику:



Задание 2. Постройте график функции и по графику опишите её свойства:

1)
$$y = \sin x + |\sin x|$$
; 2) $y = |2x - 3| + |x + 2|$, $x \in [-4, 4]$.

Задание 3. Найдите образ B = f(A) множества $A = \{x\}$ при отображении функцией y = f(x);

изобразите отображение $A \to B$ графически и укажите его тип: $f(x) = -|\log_3 x|$, $A = [\frac{1}{3}; 27)$.

Задание 4. Найдите множество A, которое является прообразом множества $B = \{y\}$ при отображении функцией y = f(x); изобразите отображение $A \to B$ графически и укажите его тип: $y = \frac{2x-1}{x-1}$, B = [3;5].

Ответы к заданиям варианта 0 самостоятельной работы №4

Задание 1. ООФ : $x \in (-\infty;0) \cup (0;3) \cup (3;+\infty)$; ОЗФ : $y \in (-4;+\infty)$;

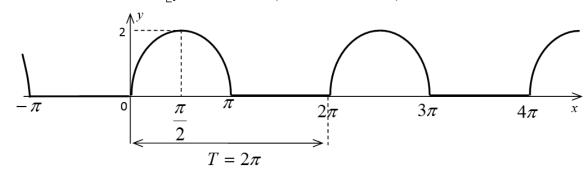
множество нулей функции и множества промежутков ее знакопостоянства:

$$D_0 = \{-3; -1,7\}, \quad D_- = (-\infty; -3) \cup (-1,7;0) \cup (3;+\infty), \quad D_+ = (-3; -1,7) \cup (0;3);$$

функция непериодическая; функция не является ни четной, ни нечетной; монотонность функции:

 $f(x) \uparrow$ при $x \in (-\infty; -2), x \in (-1; 0), x \in (0; 3), x \in (5; +\infty), f(x) \downarrow$ при $x \in (-2; -1), x \in (3; 5);$ локальные экстремумы функции: $y_{\text{max}} = 3$ при x = -2, $y_{\text{min}} = -3$ при x = -1, $y_{\text{max}} = -3$ при x = 5; глобальные экстремумы функции: на ООФ $y_{\text{наим}}$ не \exists , $y_{\text{наиб}}$ не \exists ; функция не ограничена, так как множество её значений не ограничено сверху; точные грани функции: $\sup f(x) = +\infty$, $\inf f(x) = -4$. Задание 2 (6 баллов)

1)
$$y = \sin x + |\sin x| \Leftrightarrow \begin{bmatrix} y = 2\sin x, & x \in [0 + 2\pi n; & \pi + 2\pi n], & n \in \square \\ y = 0, & x \in (\pi + 2\pi n; 2\pi + 2\pi n), & n \in \square \end{bmatrix}$$



 $OO\Phi : x \in (-\infty; +\infty) : O3\Phi : y \in [0;2]$:

нули функции и промежутки её знакопостоянства:

 $D_0 = \{x \, / \, x \in [-\pi + 2\pi n; \, 0 + 2\pi n], \, n \in \square \}, \quad D_+ = \{x \, / \, x \in (0 + 2\pi n; \, \pi + 2\pi n), \, n \in \square \}, \, D_- = \varnothing; \, \text{функция} \, \, y$ = f(x) является периодической с наименьшим периодом $T = 2\pi$;

 \boldsymbol{x}

функция y = f(x) не является ни четной, ни нечетной;

 $-\pi$ промежутки монотонности функции:

$$f(x)$$
 ↑ при $x \in (0+2\pi n; \frac{\pi}{2}+2\pi n), n \in \square$, $f(x)$ ↓ при $x \in (\frac{\pi}{2}+2\pi n; \pi+2\pi n), n \in \square$;

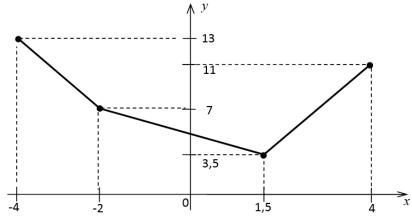
локальные экстремумы функции: $y_{\text{max}} = 2$ при $x = \frac{\pi}{2} + 2\pi n$, $n \in \square$;

глобальные экстремумы функции на ООФ: $y_{hau6} = 2$, $y_{haum} = 0$;

функция ограничена, так как множество её значений ограничено;

точные грани функции: $\sup f(x) = 2$, $\inf f(x) = 0$.

2)
$$y = |2x - 3| + |x + 2|$$
, $x \in [-4; 4]$ \Leftrightarrow $y = 1 - 3x$, $x \in [-4; -2)$
 $y = 5 - x$, $x \in [-2; \frac{3}{2}]$
 $y = 3x - 1$, $x \in (\frac{3}{2}; 4]$



 $OO\Phi : x \in [-4, 4]; O3\Phi : y \in [3,5, 13];$

нули функции и промежутки ее знакопостоянства: $D_0 = \emptyset$, $D_+ = [-4; 4]$, $D_- = \emptyset$; функция не является периодической и свойством четности не обладает;

промежутки монотонности функции: $f(x) \uparrow$ при $x \in (1,5;4)$, $f(x) \downarrow$ при $x \in (-4;1,5)$;

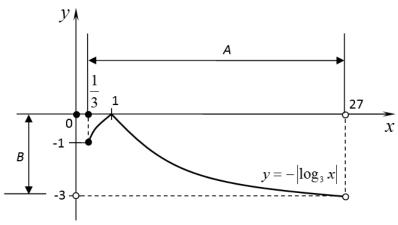
локальные экстремумы функции: $y_{\min} = 3.5$ при x = 1.5;

глобальные экстремумы функции: на ООФ $y_{Haud} = 13$, $y_{Haud} = 3.5$;

функция ограничена, так как множество её значений ограничено;

точные грани функции: $\sup f(x) = 13$, $\inf f(x) = 3.5$.

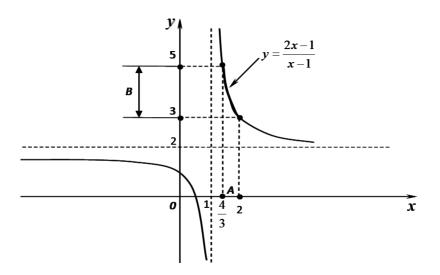
Задание 3. Иллюстрация



Множество $B = \{y \mid y \in (-3;0]\}$ является образом множества $A = \left\{x \mid x \in \left[\frac{1}{3};27\right]\right\}$ при

отображении функцией $y = -|\log_3 x|$; отображение $A \to B$ является сюръективным, но не является инъективным, следовательно, не является биективным.

Задание 4. Иллюстрация



Множество
$$A = \left\{ x \, / \, x \in \left[\frac{4}{3}; 2 \right] \right\}$$
 является прообразом множества $B = \left\{ y \, / \, y \in [3; 5] \right\}$ при

отображении функцией $y = \frac{2x-1}{x-1}$; отображение $A \to B$ является сюръективным и инъективным, следовательно, является биективным.

Обобщающий практикум по разделу 2

Содержание: исследование функций, действия с комплексными числами, решение простейших уравнений на множестве комплексных чисел

Литература: [1, стр. 146-179], [10, стр. 127-135].

Вопросы для самоконтроля:

- 1. Составьте план исследования функции одной переменной.
- 2. Дайте определение и назовите формы записи комплексного числа.
- 3. Какова специфика сложения, вычитания, деления, умножения комплексных чисел.
- 4. Какие числа называются комплексно сопряжёнными?
- 5. Запишите формулу Эйлера.
- 6. Запишите формулу Муавра.
- 7. Запишите формулу для извлечения корня п-ной степени из комплексного числа и сформулируйте геометрическую интерпретацию.
- 8. Приведите примеры использования множества комплексных чисел в прикладных задачах.

Задания для самостоятельного выполнения

КДЗ №2 по разделу «Введение в математический анализ»

Задание 1. Постройте множества точек плоскости:

1)
$$A = \{(x; y) / |x| - |y| \le 1 \text{ if } |x| + |y| \le 2\};$$
 3) $B = \{(\varphi; \rho) / \rho < 2 + \cos \varphi\};$ 2) $M = \{(x; y) / \frac{1}{x} + \frac{1}{y} < 0\}$ 4) $C = \{(\varphi; \rho) / 1 \le \rho \le 2 \sin 3\varphi\};$

здесь (x; y) — это декартовы прямоугольные координаты точек, $(\varphi; \rho)$ — это полярные координаты точек.

Задание 2. Найдите множество A значений a, при которых неравенство $(x-a)\cdot\sqrt{x+3}\leq 0$ имеет ровно 4 целых решения. Укажите следующие характеристики множества A: ограниченность, точные грани, экстремумы, мощность множества.

Задание 3. Постройте множество B и перечислите его элементы:

$$B = \{(x, y) \mid x \in \square, y \in \square, 2x + y \ge 2, x - 2y \ge -1, 2x - y \le 4, x + y \le 4\}.$$

Перечислите элементы, укажите их количество и найдите экстремумы множества

$$A = \{z \mid z = 3x + 2y + 5, (x, y) \in B\}.$$

Задание 4. Найдите все значения a, при которых множество решений неравенства (a-1)x > 1 является подмножеством множества решений неравенства 5x > a + 3.

Задание 5. Определите n(A) – количество элементов множества A, состоящего из натуральных делителей числа 420, отличных от единицы.

Задание 6. Найдите образ f(A) множества $A = \{x\}$ при отображении функцией f(x), укажите тип отображения $A \to f(A)$: $f(x) = \ln(\cos^2 x - 1)$, $A = (0; \pi)$.

Задание 7. Найдите множество $A = \{x\}$, которое является прообразом множества B = [0;3] при отображении функцией $f(x) = |\ln|x - 2|$; укажите тип отображения $A \to B$.

Задание 8. Запишите суперпозиции $f \circ g \circ u$, $g \circ f \circ u$, $u \circ f \circ g$, если $f(x) = \sqrt{x}$, $g(x) = (x+1)^2$, $u(x) = 2^x$; укажите отображения множеств, которые они задают.

Задание 9. Постройте графики функций y = f(x), y = g(x), y = f(g(x)) и y = g(f(x)) и опишите отображения множеств, задаваемых каждой из этих функций: $f(x) = \cos x$, $g(x) = \arccos x$.

Задание 10. Функция y = f(x) определена так: в каждом из промежутков $x \in [n; n+1)$, $n \in \square$ функция является линейной, причём f(n) = -1, f(n+0.5) = 0. Постройте график этой функции и перечислите её глобальные свойства. Какова мощность множества промежутков монотонности этой функции?

Задание 11. Постройте схематично графики каждой из следующих функций, охарактеризуйте их ограниченность, укажите их точные грани и глобальные экстремумы:

1)
$$y = \frac{x^4}{1+x^4}$$
; 2) $y = \ln \sin x$; 3) $y = x \cos x$.

Задание 12. Постройте график функции $y = [x^2]$, опишите её свойства и укажите мощность множества её значений.

Задание 13. Башня имеет следующую форму: на прямой круглый усеченный конус с радиусами оснований 2R (нижнего) и R (верхнего) и высотой R поставлен цилиндр радиуса R и высоты 2R; на цилиндре установлена полусфера радиуса R. Выразите площадь S поперечного сечения башни как функцию расстояния x, на которое сечение удалено от нижнего основания конуса. Постройте график функции S = f(x).

Задание 14. Материальная точка M(x; y) движется по плоской траектории в течение шести минут так, что её декартовы прямоугольные координаты изменяются в зависимости от времени t по следующему

закону:
$$\begin{cases} x(t) = 2\cos^3 \pi t \\ y(t) = 2\sin^3 \pi t \end{cases}$$
. Постройте траекторию движения по точкам, взяв шаг то t , равный 30

секундам. Составьте уравнение траектории в виде функции y(x), имеющей неявное и явное задание.

Задание 1. Даны два множества: $X_1 = \left\{ x \, / \, \left| x - 2 \right| < 10 \right\}, \;\; X_2 = \left\{ x \, / \, x^2 < a \right\}$. Найдите множество $A = \left\{ a \, / \, X_2 \subset X_1 \right\}$.

Задание 2. Дано множество $A = \{(x; y) \mid x \in \mathbf{Z}, y \in \mathbf{Z} , 0 \le x \le 2, 0 \le y \le 2x \}$. Найдите n(A).

Задание 3. Даны функция $f(x) = 2^{x^2-1}$ и множество A = [-1, 2]. Найдите f(A).

Задание 4. $f(x) = \frac{2x-1}{1-x}$. Найдите множество $A = \{x/y = f(x), y \in [0;1]\}$.

Задание 5. Сколько точек локальных экстремумов имеет функция $y = |x - x^2| + 1$?

Задание 6. Найдите $\min X$, если X – это ООФ $y = \sqrt{2 - \lg |x - 2|}$.

Задание 7. Укажите номера функций, обладающих свойством четности:

1)
$$y = \sin \frac{1}{x}$$
; 2) $y = (x^2 - 1)^{-1}$; 3) $y = |x - 1|$; 4) $y = \frac{\cos x}{x^2}$.

Задание 8. Найдите длину промежутка, на который функция $y = \sqrt{|x|}$ отображает интервал (-4;9).

Ответы к заданиям защиты КДЗ №2 (вариант 0)

Задание 1. $A = (-\infty; 64]$.

Задание 2. n(A) = 9.

Задание 3. f(A) = [0,5;8].

Задание 4. $A = \left[\frac{1}{2}; \frac{2}{3}\right]$.

Задание 5. 3.

Задание 6. min X = -98.

Задание 7. 1), 2), 4).

Задание 8. 3.

Задание 9. 3+0,2i.

Задание 10. $z = 8(\cos \pi + i \sin \pi) = -8$.

Задание 11. $z_1 = 13 - i$, $z_2 = 7 + i$.

Задание 12. $x \in \{2i; -2i; i\sqrt{3}; -i\sqrt{3}\}.$

Практикум по теме «Предел последовательности» (раздел 3.1)

Цель: отработать основные определения и свойства, связанные с пределом числовой последовательности.

Содержание: определение предела числовой последовательности; сходящиеся и расходящиеся последовательности; бесконечно малые, бесконечно большие, монотонные и ограниченные последовательности; признаки существования пределов; вычисление пределов последовательностей с помощью свойств сходящихся, бесконечно малых, бесконечно больших и ограниченных

последовательностей; способы раскрытия неопределённостей вида $\left\lceil \frac{\infty}{\infty} \right\rceil$ и $\left\lceil \infty - \infty \right\rceil$.

Литература: [1, стр. 34-57; 2, стр. 67-94 и др.].

Вопросы для самоконтроля:

- 7. Постройте геометрическую иллюстрацию и запишите формальное определение конечного предела последовательности.
- 8. Сформулируйте описательное определение предела последовательности.
- 9. Составьте геометрическую иллюстрацию и формальное определение предела последовательности, равного ($-\infty$).
- 10. Какая последовательность называется стационарной?
- 11. Перечислите основные виды последовательностей, исходя из их предельного поведения и ограниченности.
- 12. Какая последовательность называется зажатой и каким свойством предельного поведения она может обладать?
- 13. Как связаны члены сходящейся последовательности с её пределом?
- 14. Приведите краткие названия и формулировки основных теорем о сходящихся, бесконечно малых, бесконечно больших, монотонных, ограниченных последовательностях.
- 15. Является ли ограниченность необходимым и достаточным условием для сходимости числовой последовательности?
- 16. Является ли неограниченность необходимым и достаточным условием для бесконечно большой последовательности?
- 17. Можно ли с помощью теоремы Вейерштрасса найти значение предела последовательности, если она монотонно возрастает, а также известна некоторая верхняя грань множества, составленного из всех её членов?
- 18. В каких случаях возникает неопределённость в вычислении предела последовательности? Приведите примеры и способы раскрытия неопределённостей для них.
- 19. Пределом какой последовательности является число е?

Задания для самостоятельного выполнения

Самостоятельная работа №5 (0-й вариант)

Задача 1

Используя строгое определение предела последовательности, докажите, что $\lim_{n\to\infty} \frac{(-1)^n}{\sqrt{n}} = 0$.

Задача 2

Среди данных последовательностей $\{x_n\}$ укажите номера а) сходящихся, б) расходящихся, в) бесконечно малых, г) бесконечно больших, д) ограниченных, е) монотонных последовательностей, записав предварительно каждую последовательность в развернутом виде и указав, чему равен ее предел $\lim_{n\to\infty} x_n$:

1)
$$x_n = 3n - 1;$$
 2) $x_n = \frac{(-1)^n}{n^2 + 41};$ 3) $x_n = ((-1)^n + 1) \cdot \sqrt{n};$ 4) $x_n = \frac{2^n - 1}{2^n};$

5)
$$x_n = \frac{1}{\ln(n+1)}$$
; 6) $x_n = \sin\frac{\pi n}{2}$; 7) $x_n = \frac{\cos\pi n}{3^{n-1}}$; 8) $x_{n+1} = 10 \cdot x_n$, $n \in \square$, $x_1 = 0.001$.

Задача 3

Последовательность $\{a_n\}$ задана рекуррентной формулой $a_{n+1}=a_n+\frac{1}{2^n}, n\in \square$, $a_1=2$;

- 1) запишите члены этой последовательности и составьте формулу общего члена a_n ;
- 2) существует ли и чему равен предел $\lim_{n\to\infty} a_n$? Приведите обоснование ответа.

Задача 4

а) Вычислите пределы последовательностей, используя свойства сходящихся, ограниченных, бесконечно малых и бесконечно больших последовательностей; поясните каждый ответ с точки зрения описательного определения предела последовательности:

1)
$$\lim_{n\to\infty} \frac{5n^2 - 4n + 1}{8n^2 - 5n + 3}$$
; 2) $\lim_{n\to\infty} (\frac{\sqrt{n^2 + 2n} - \sqrt{n^2 + 4}}{n + 1})$; 3) $\lim_{n\to\infty} \frac{3 + 6 + 9 + \dots + 3n}{n^2 - 2}$;

4)
$$\lim_{n\to\infty} \frac{(3n+1)!-(3n)!}{(3n+1)!};$$
 5) $\lim_{n\to\infty} (\sqrt[3]{n+2} - \sqrt[3]{n^2+1});$

б) перечислите и кратко сформулируйте теоремы, которые использовались при вычислении данных пределов.

Ответы к задачам 0-го варианта самостоятельной работы №5

Задача 1

$$\lim_{n\to\infty}\frac{(-1)^n}{\sqrt{n}}=0\;,\;\text{так как}\quad\forall\;\varepsilon>0\;\exists\;n_0(\varepsilon)=\left[\frac{1}{\varepsilon^2}\right]+1\;\middle|\;\frac{(-1)^n}{\sqrt{n}}\middle|<\varepsilon\quad\text{при}\;\forall n\geq n_0.$$

Задача 2

1)
$$x_n = 3n - 1 \implies \{2; 5; 8; 11; 14; ...\} \implies \lim_{n \to \infty} x_n = +\infty;$$

2)
$$x_n = \frac{(-1)^n}{n^2 + 41} \implies \left\{ -\frac{1}{42}; \frac{1}{45}; -\frac{1}{50}; \frac{1}{65}; \dots \right\} \implies \lim_{n \to \infty} x_n = 0;$$

3)
$$x_n = ((-1)^n + 1) \cdot \sqrt{n} \implies \left\{0; 2\sqrt{2}; 0; 2\sqrt{4}; 0; 2\sqrt{6}; ...\right\} \implies \lim_{n \to \infty} x_n \text{ He } \exists;$$

4)
$$x_n = \frac{2^n - 1}{2^n} = 1 - \frac{1}{2^n} \Rightarrow \left\{ \frac{1}{2}; \frac{3}{4}; \frac{7}{8}; \frac{15}{16}; \dots \right\} \Rightarrow \lim_{n \to \infty} x_n = 1;$$

5)
$$x_n = \frac{1}{\ln(n+1)} \Rightarrow \left\{ \frac{1}{\ln 2}; \frac{1}{\ln 3}; \frac{1}{\ln 4}; \dots \right\} \Rightarrow \lim_{n \to \infty} x_n = 0;$$

6)
$$x_n = \sin \frac{\pi n}{2} \Rightarrow \{1; 0; -1; 0; 1; 0; ...\} \Rightarrow \lim_{n \to \infty} x_n \text{ He } \exists;$$

7)
$$x_n = \frac{\cos \pi n}{3^{n-1}} \Rightarrow \left\{ -1; \frac{1}{3}; -\frac{1}{9}; \frac{1}{27}; \dots \right\} \Rightarrow \lim_{n \to \infty} x_n = 0;$$

8)
$$x_{n+1} = 10x_n$$
, $x_1 = 0.001 \Rightarrow \left\{ \frac{1}{1000}; \frac{1}{100}; \frac{1}{10}; 1; 10; 10^2; \dots \right\} \Rightarrow \lim_{n \to \infty} x_n = +\infty$.

- а) сходящиеся последовательности: 2), 4), 5), 7);
- б) расходящиеся последовательности: 1), 3), 6), 8);
- в) бесконечно малые последовательности: 2), 5), 7);
- г) бесконечно большие последовательности: 1), 8);
- д) ограниченные последовательности: 2), 4), 5), 6), 7);
- е) монотонные последовательности: $\uparrow -1$), 4), 8); $\downarrow -5$).

Задача 3

$$\{a_n\} = \left\{2; \ 2 + \frac{1}{2}; \ 2 + \frac{1}{2} + \frac{1}{2^2}; \ 2 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3}; \ 2 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \frac{1}{2^4}; \ldots\right\},$$

$$1)$$

$$a_n = 3 - \left(\frac{1}{2}\right)^{n-1}, n = 1, 2, 3, \ldots;$$

2) $\lim_{n\to\infty} a_n = 3$, так как члены последовательности $\{a_n\}$ представлены суммой числа 3 и

членов бесконечно малой последовательности $\alpha_n = -\left(\frac{1}{2}\right)^{n-1}$.

a) 1) $\lim_{n\to\infty} \frac{5n^2 - 4n + 1}{8n^2 - 5n + 3} = \frac{5}{8}$; этот ответ означает, что члены данной последовательности становятся

сколь угодно близкими к числу $\frac{5}{8}$, если брать номера этих членов достаточно большими;

2)
$$\lim_{n\to\infty}(\frac{\sqrt{n^2+2n}-\sqrt{n^2+4}}{n+1})=0;$$
 этот ответ означает, что члены данной последовательности

при достаточно больших номерах n сколь угодно близко подходят к числу 0;

3)
$$\lim_{n\to\infty} \frac{3+6+9+...+3n}{\sqrt{n^2-2}} = \lim_{n\to\infty} \frac{\frac{3+3n}{2} \cdot n}{\sqrt{n^2-2}} = +\infty;$$
 этот ответ означает, что члены данной

последовательности при достаточно больших номерах n становятся сколь угодно большими;

- 4) $\lim_{n\to\infty}\frac{(3n+1)!-(3n)!}{(3n+1)!}=1$; этот результат означает, что члены этой последовательности становятся сколь угодно близкими к числу 1 при достаточно больших их номерах n;
 - 5) $\lim_{n\to\infty} \sqrt[3]{n+2} \sqrt[3]{n^2+1} = -\infty$; этот ответ означает, что члены этой последовательности при достаточно больших значениях их номера n становятся сколь угодно большими по модулю, но отрицательными.
- б) При вычислении пределов 1) 5) использовались следующие теоремы:
 - 1) теоремы о конечных пределах:

$$\operatorname{ec}_{\Pi\Pi}\lim_{n\to\infty}u_n=a$$
 и $\lim_{n\to\infty}v_n=b$, то $\lim_{n\to\infty}\left(u_n\pm v_n\right)=a\pm b$, $\lim_{n\to\infty}\frac{u_n}{v_n}=\frac{a}{b}$ при $b\neq 0$;

2) теоремы о бесконечно малых, бесконечно больших и ограниченных последовательностях:

$$\frac{1}{6.\text{M}} = 6.6.;$$
 $\frac{1}{6.6} = 6.\text{M.};$ $6.\text{M.} \cdot \text{огр.} = 6.\text{M.};$ $6.5. \times \text{огр.} = 6.6.,$ если огр $\neq 6.\text{M.}$; $6.\text{M.} + 6.\text{M.} = 6.\text{M.};$ $6.5. + 6.5. = 6.5.,$ если складываемые 6.6. имеют одинаковый знак.

Практикум по теме «Пределы функции одной переменной (ФОП)» (разделы 3.2-3.3)

Цель: отработать основные определения и свойства, связанные с нахождением предела числовой функции одной переменной f(x) в точке x = a, $a \in \Box$.

Содержание: определения предела функции f(x) в точке x=a, $a\in \square$; бесконечно малые, бесконечно большие, локально ограниченные функции в окрестности точки из своей области определения; использование принципа замены эквивалентных бесконечно малых при вычислении пределов функции; типы и способы раскрытия неопределённостей, возникающих при вычислении предела функции в точке; качественное и количественное сравнение бесконечно малых и бесконечно больших функций; чтение предельного поведения функции по её графику; непрерывность, точки разрыва; свойства функции, непрерывной в точке / на отрезке.

Литература: [1, стр. 58-96; 2, стр. 95-147; 4, стр. 33-63 и др.]. **Вопросы** для самоконтроля:

1. Сформулируйте определения пределов функции в точке $x = a, a \in \overline{\square}$: по Гейне, по Коши, на языке « ϵ - δ », описательное.

- 2. Приведите примеры нахождения предела для выбранной функции в выбранной точке x = a (конечной и бесконечно удалённой) по определению на языке « ε - δ »; проиллюстрируйте предельное поведение каждой функции в окрестности выбранной точки x = a.
- 3. Перечислите возможные локальные свойства функций, исходя из их поведения в окрестности точек из области определения.
- 4. Сформулируйте признак существования конечного предела функции в точке.
- 5. Сформулируйте теорему о сохранении функцией знака своего конечного предела.
- 6. Запишите основные типы неопределенностей, возникающих при вычислении предела функции в точке.
- 7. Перечислите пределы, которые называются замечательными.
- 8. Какие функции называются эквивалентными бесконечно малыми? Как используются эти эквивалентности при вычислении пределов функции в точке?
- 9. Каким образом проводят сравнение бесконечно малых и бесконечно больших функций в точке?
- 10. Как используется аппарат сравнения бесконечно больших функций в теории алгоритмов?
- 11. Дайте определение функции, непрерывной в точке.
- 12. Какой предел называют односторонним?
- 13. Что такое односторонняя непрерывность функции в точке?
- 14. Дайте определение точки разрыва функции и приведите классификацию точек разрыва.
- 15. Разрыв какого типа имеет функция $f(x) = \sin \frac{1}{x}$ в точке x = 0?
- 16. Дайте определение функции, непрерывной на отрезке.
- 17. Перечислите свойства функций, непрерывных на отрезке.
- 18. Как теорема Больцано-Коши и метод бисекции используются для приближённого (численного) решения уравнений?

Практикум по теме «Техника дифференцирования ФОП» (раздел 4.1)

Цель: освоить правила дифференцирования ФОП, которые заданы явно, неявно, параметрически, а также особые случаи дифференцирования (дифференцирование обратной функции, логарифмическое дифференцирование и повторное дифференцирование).

Содержание: производная функции в точке: определение, геометрическая и механическая трактовки; связь свойств непрерывности и дифференцируемости; правила дифференцирования; производные основных элементарных функций; правила дифференцирования функций, заданных неявно, параметрически, особые случаи дифференцирования: дифференцирование обратной функции, логарифмическое дифференцирование и повторное дифференцирование.

Литература: [1, стр. 96-120; 2, стр. 148-160; 4, стр. 64-110 и др.].

Вопросы для самоконтроля:

- 1. Дайте определение производной функции в точке.
- 2. Какова связь свойств непрерывности и дифференцируемости функций?
- 3. Сформулируйте геометрический и механический смысл производной функции в точке.
- 4. Используя определение производной, докажите правило дифференцирования произведения функций.
- 5. Используя определение, получите производную степенной функции.
- 6. Как вычислить производную сложной функции?
- 7. Что такое повторное дифференцирование?
- 8. Что такое логарифмическое дифференцирование?